DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens.

نویسندگان

  • Cinthia Núñez
  • Abraham Esteve-Núñez
  • Carol Giometti
  • Sandra Tollaksen
  • Tripti Khare
  • Winston Lin
  • Derek R Lovley
  • Barbara A Methé
چکیده

The regulon of the sigma factor RpoS was defined in Geobacter sulfurreducens by using a combination of DNA microarray expression profiles and proteomics. An rpoS mutant was examined under steady-state conditions with acetate as an electron donor and fumarate as an electron acceptor and with additional transcriptional profiling using Fe(III) as an electron acceptor. Expression analysis revealed that RpoS acts as both a positive and negative regulator. Many of the RpoS-dependent genes determined play roles in energy metabolism, including the tricarboxylic acid cycle, signal transduction, transport, protein synthesis and degradation, and amino acid metabolism and transport. As expected, RpoS activated genes involved in oxidative stress resistance and adaptation to nutrient limitation. Transcription of the cytochrome c oxidase operon, necessary for G. sulfurreducens growth using oxygen as an electron acceptor, and expression of at least 13 c-type cytochromes, including one previously shown to participate in Fe(III) reduction (MacA), were RpoS dependent. Analysis of a subset of the rpoS mutant proteome indicated that 15 major protein species showed reproducible differences in abundance relative to those of the wild-type strain. Protein identification using mass spectrometry indicated that the expression of seven of these proteins correlated with the microarray data. Collectively, these results indicate that RpoS exerts global effects on G. sulfurreducens physiology and that RpoS is vital to G. sulfurreducens survival under conditions typically encountered in its native subsurface environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens.

Geobacter sulfurreducens RpoS sigma factor was shown to contribute to survival in stationary phase and upon oxygen exposure. Furthermore, a mutation in rpoS decreased the rate of reduction of insoluble Fe(III) but not of soluble forms of iron. This study suggests that RpoS plays a role in regulating metabolism of Geobacter under suboptimal conditions in subsurface environments.

متن کامل

The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism.

Iron plays a critical role in the physiology of Geobacter species. It serves as both an essential component for proteins and cofactors and an electron acceptor during anaerobic respiration. Here, we investigated the iron stimulon and ferric uptake regulator (Fur) regulon of Geobacter sulfurreducens to examine the coordination between uptake of Fe(II) and the reduction of Fe(III) at the transcri...

متن کامل

DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens.

A DNA microarray representing the genome of Geobacter sulfurreducens was constructed for use in global gene expression profiling of cells under steady-state conditions with acetate as the electron donor and Fe(III) or fumarate as the electron acceptor. Reproducible differences in transcript levels were also observed in comparisons between cells grown with ammonia and those fixing atmospheric ni...

متن کامل

Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage.

The Escherichia coli LexA protein was used as a query sequence in TBLASTN searches to identify the lexA gene of the delta-proteobacterium Geobacter sulfurreducens from its genome sequence. The results of the search indicated that G. sulfurreducens has two independent lexA genes designated lexA1 and lexA2. A copy of a dinB gene homologue, which in E. coli encodes DNA polymerase IV, is present do...

متن کامل

Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.

Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 188 8  شماره 

صفحات  -

تاریخ انتشار 2006